Skip to main content
Log in

Erythropoietic protoporphyria

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Partial deficiency of the last enzyme of haem biosynthesis, ferrochelatase, leads to a distinct syndrome of photosensitivity caused by overproduction of protoporphyrin by erythropoietic tissue. Erythropoietic protoporphyria has an indeterminate pattern of inheritance and may be complicated by fulminating liver disease. The recent development of simple assays for ferrochelatase activity and cloning of the human ferrochelatase gene promises to shed light on the transmission of this disorder and may allow clinical expression of disease to be predicted. This review surveys the pathological features, genetics and treatment of porphyria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alison AC, Magnus IA, Young MR (1966) Role of lysosomes and of cell membranes in photosensitization. Nature 209: 874–878.

    Google Scholar 

  • Baart de la Faille H, Bijlmer-Iest JC, van Hattum J, Koningsberger J, Rademakers LH, van Weelden H (1991) Erythropoietic protoporphyria: clinical aspects with emphasis on the skin. Curr Prob Dermatol 20: 123–134.

    Google Scholar 

  • Bloomer JR, Pierach CA (1982) Effect of haematin administration to patients with protoporphyria and liver disease. Hepatology 2: 817–821.

    Google Scholar 

  • Bloomer JR, Phillips MJ, Davidson DL, Klatskin G, Bloomer J (1975) Hepatic disease in erythropoietic protoporphoryia. Am J Med 58: 869–882.

    Google Scholar 

  • Bonkowsky HL, Bloomer JR, Ebert PS, Mahoney MJ (1975) Heme synthetase deficiency in human protoporphyria. Demonstration of the defect in liver and cultured skin fibroblasts. J Clin Invest 56: 1139–1148.

    Google Scholar 

  • Bottomley SS, Tanaka M, Everett MA (1975) Diminished erythroid ferrochelatase activity in protoporphyria. J Lab Clin Med 86: 126–131.

    Google Scholar 

  • Brenner DA, Dider JM, Frasier F, Christensen SR, Evans GA, Dailey HA (1992) A molecular defect in human protoporphyria. Am J Hum Genet 50: 1203–1210.

    Google Scholar 

  • Conley CL, Chisholm JJ (1979) Recovery from hepatic decompensation in protoporphyria. Johns Hopkins Med J 145: 237–240.

    Google Scholar 

  • Corbett MF, Herxheimer A, Magnus IA, Ramsay CA, Kobza-Black A (1977) The long term treatment with β-carotene in erythropoietic protoporphyria: a controlled trial. Br J Dermatol 97: 655–662.

    Google Scholar 

  • Dailey HA, Finnegan MG, Johnson MK (1994) Human ferrochelatase is an iron-sulfur protein. Biochemistry 33: 403–407.

    Google Scholar 

  • Dalton J, McAuliffe CA, Slater DH (1972) Reaction between molecular oxygen and photoexcited protoporphyrin IX. Nature 235: 388.

    Google Scholar 

  • Deleo VA, Poh-Fitzpatrick MB, Mathews-Roth M, Harber LC (1976) Erythropoietic protoporphyrin. 10 years experience. Am J Med 60: 8–22.

    Google Scholar 

  • Dobozny A, Csató M, Siklósi C, Simon N (1983) Transfusion therapy for erythropoietic protoporphyria. Br J Dermatol 109: 571–576.

    Google Scholar 

  • Doss MO, Frank M (1989) Hepatobiliary implications and complications in protoporphyria, a 20 year study. Clin Biochem 22: 223–229.

    Google Scholar 

  • Elder GH, Smith SG, Smyth SJ (1990) Laboratory investigation of the porphyrias. Ann Clin Biochem 27: 395–412.

    Google Scholar 

  • Gardner LC, Cox TM (1988) Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron. J Biol Chem 263: 6676–6682.

    Google Scholar 

  • Gardner LC, Smith SJ, Cox TM (1991) Biosynthesis of δ-aminolevulinic acid and the regulation of heme formation by immature erythroid cells in man. J Biol Chem 266: 22010–22018.

    Google Scholar 

  • Goerz G, Krieg T, Bolsen K, Seubert S, Ippen H (1976) Erythropoietic protoporphyria: porphyrin content of a gallstone. Arch Dermatol Res 256: 283–289.

    Google Scholar 

  • Goerz G, Bolsen K, Bunselmeyer S, Schurer NH (1994) Recessive inheritance of erythropoietic protoporphyria with liver failure. Lancet 344: 337.

    Google Scholar 

  • Goerz G, Bunselmeyer S, Bolsen K, Schurer NY (1996) Ferrochelatase activities in patients with erythropoietic protoporphyria and their families. Br J Dermatol 134: 880–885.

    Google Scholar 

  • Goldstein BD, Harber LC (1972) Erythropoietic protoporphyria: lipid peroxidation and red cell membrane damage associated with photohemolysis. J Clin Invest 51: 892–902.

    Google Scholar 

  • Gouya L, Deybach JC, Lamoril J, et al (1996) Modulation of the phenotype in dominant erythropoietic protoporphyria by a low expression of the normal ferrochelatase allele. Am J Hum Genet 58: 292–299.

    Google Scholar 

  • Henriksson M, Timonen K, Mustajoki P, et al (1996) Four novel mutations in the ferrochelatase gene among erythropoietic protoporphyria patients. J Invest Dermatol 106: 346–350.

    Google Scholar 

  • Imoto S, Tanizawa Y, Sata Y, Kaku K, Oka Y (1996) A novel mutation in the ferrochelatase gene associated with erythropoietic protoporphyria. Br J Haematol 94: 191–197.

    Google Scholar 

  • Jones MS, Jones OTG (1969) The structural organization of haem synthesis in rat liver mitochondria. Biochem J 113: 507–514.

    Google Scholar 

  • Kappas A, Sassa S, Galbraith RA, Nordmann Y (1995) The Porphyrias. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease, 7th edn. New York: McGraw-Hill, 2139–2141.

    Google Scholar 

  • Kauffman L, Evans DIK, Stevens RF, Weinhove C (1991) Bone marrow transplantation for congenital erythropoietic porphyria. Lancet 337: 1510–1511.

    Google Scholar 

  • Koningsberger JC (1992) The dark side of protoporphyrin. A study on the toxic dark effects of protoporphyrin. Thesis, Glaxo BV, Netherlands.

    Google Scholar 

  • Lamola AA, Yamane T (1974) Zinc protoporphyrin in the erythrocytes of patients with lead intoxication and iron deficiency anemia. Science 186: 936–938.

    Google Scholar 

  • Lamoril J, Boulechfar S, de Verneuil H, Grandchamp B, Nordmann Y, Deybach J-C (1991) Human erythropoietic protoporphyria: two point mutations in the ferrochelatase gene. Biochem Biophys Res Commun 181: 594–599.

    Google Scholar 

  • Magness ST, Tugores A, Christensen SR, et al (1994) Deletion of the ferrochelatase gene in a patient with protoporphyria. Hum Mol Genet 3: 1695–1697.

    Google Scholar 

  • Magnus IA, Jarrett A, Prankerd TAJ, Rimington C (1961) Erythropoietic protoporphyria: a new porphyria syndrome with solar urticaria due to protoporphyrinaemia. Lancet 2: 448–451.

    Google Scholar 

  • MacDonald DM, Germain D, Perrot H (1981) The histopathology and ultrastructure of liver disease in erythropoietic protoporphyria. Br J Dermatol 104: 71–77.

    Google Scholar 

  • Mathews-Roth MM, Pathak MA, Fitzpatrick TB, Harber LH, Kass EH (1974) Beta carotene as an oral photoprotective agent in erythropoietic protoporphyria. J Am Med Assoc 228: 1004–1008.

    Google Scholar 

  • Mathews-Roth MM, Wise RJ, Miller BA (1996) Burst-forming units-erythroid for erythropoietic protoporphyria patients fluoresce under 405nm light. Blood 87: 4480–4481.

    Google Scholar 

  • Matilla A, Molland EA (1974) A light and electron microscopic study of the liver in a case of erythropoietic protoporphyria and in griseofulvin-induced porphyria in mice. J Clin Pathol 27: 698–709.

    Google Scholar 

  • McCullough AJ, Barron D, Mullen KD, et al (1988) Fecal protoporphyrin excretion in erythropoietic protoporphyria: effect of cholestyramine and bile acid feeding. Gastroenterology 94: 177–181.

    Google Scholar 

  • Nakahashi Y, Taketani S, Okuda M, Inoue K, Tokunaga R (1990) Molecular cloning and sequence analysis of cDNA encoding human ferrochelatase. Biochem Biophys Res Commun 173: 748–755.

    Google Scholar 

  • Nakahashi Y, Fujita H, Taketani S, Ishida N, Kappas A, Sassa S (1992) The molecular defect of ferrochelatase in a patient with erythropoietic protoporphyria. Proc Natl Acad Sci USA 89: 281–285.

    Google Scholar 

  • Nakahashi Y, Miyazaki H, Kadota Y, et al (1993a) Molecular defect in human erythropoietic protoporphyria with fatal liver failure. Hum Genet 91: 303–306.

    Google Scholar 

  • Nakahashi Y, Miyazaki H, Kadota Y, et al (1993b) Human erythropoietic protoporphyria: identification of a mutation at the splice donor site of intron 7 causing exon 7 skipping of the ferrochelatase gene. Hum Mol Genet 2: 1069–1070.

    Google Scholar 

  • Norris PG, Nunn AVW, Hawk JLM, Cox TM (1990) Genetic heterogeneity in erythropoietic protoporphyria: a study of the enzymatic defect in nine affected families. J Invest Dermatol 95: 260–263.

    Google Scholar 

  • Nunn AVW, Norris P, Hawk JLM, Cox TM (1988) Zin chelatase in human lymphocytes: detection of the enzymatic defect in erythropoietic protoporphyria. Anal Biochem 174: 146–150.

    Google Scholar 

  • Poh-Fitzpatrick MB (1985) Porphyrin-sensitized cutaneous photosensitivity: pathogenesis and treatment. Clin Dermatol 3: 41–82.

    Google Scholar 

  • Piomelli S (1973) A micromethod for free erythrocyte porphyrins: the FEP test. J Lab Clin Med 81: 932–936.

    Google Scholar 

  • Piomelli S, Poh-Fitzpatrick MB, Seaman C, Skolnick LM, Berdon WE (1986) Complete suppression of the symptoms of congenital erythropoietic porphyria by long-term treatment with high-level transfusions. N Engl J Med 314: 1029–1032.

    Google Scholar 

  • Polson RJ, Lim CK, Rolles K, Calne RY, Williams R (1988) The effect of liver transplantation in a 13-year-old boy with erythropoietic protoporphyria. Transplantation 46: 386–389.

    Google Scholar 

  • Rademakers LH, Cleton MI, Kooijman C, Baart de la Faille H, van Hattum J (1990) Early involvement of hepatic parenchymal cells in erythropoietic protoporphyria. An ultrastructural study of patients with and without overt liver disease and the effects of chenodeoxycholic acid treatment. Hepatology 11: 449–457.

    Google Scholar 

  • Rank JM, Carithers R, Bloomer JR (1993) Evidence for neurological dysfunction in end-stage protoporphyric liver disease. Hepatology 18: 1404–1409.

    Google Scholar 

  • Rimmington C, Cripps DJ (1965) Biochemical and fluorescence microscopy screening tests for erythropoietic protoporphyria. Lancet 1: 624–626.

    Google Scholar 

  • Samuel D, Boboc B, Bernau J, Bismuth H, Benhamou P (1988) Liver transplantation for protoporphyria. Evidence for the predominant rôle of the erythropoietic tissue in protoporphyrin overproduction. Gastroenterology 95: 816–819.

    Google Scholar 

  • Sarkany RPE (1995) The inheritance of human erythropoietic protoporphyria. MD thesis, University of London, 61–63.

  • Sarkany RPE, Cox TM (1995) Autosomal recessive erythropoietic protoporphyria: a syndrome of photosensitivity and liver failure. Q J Med 88: 541–549.

    Google Scholar 

  • Sarkany RPE, Whitcombe DM, Cox TM (1994a) Molecular characterization of ferrochelatase gene defect causing anomalous RNA splicing in erythropoietic protoporphyria. J Invest Dermatol 102: 481–484.

    Google Scholar 

  • Sarkany RPE, Alexander GJMA, Cox TM (1994b) Recessive inheritance of erythropoietic protoporphyria with liver failure. Lancet 343: 1394–1396.

    Google Scholar 

  • Schmidt D, Stich W (1971) Erythropoetische Protoporphyrie mit Porphyrinurie: Untersuchungen zur Frage der Leberbeteiligung bei erythropoetischer Protoporphyrie. Blut 22: 202–210.

    Google Scholar 

  • Schneider-Yin X, Schäfer B, Möhr P, Minder EI (1994) Molecular defects in erythropoietic protoporphyria with terminal liver failure. Hum Genet 93: 711–713.

    Google Scholar 

  • Schneider-Yin X, Schafter BW, Tonz O, Minder EI (1995) Human ferrochelatase: a novel mutation in patients with erythropoietic protoporphyria an isoform caused by alternate splicing. Hum Genet 95: 391–396.

    Google Scholar 

  • Smith SJ, Cox TM (1997) Translational control of erythroid δ-aminolevulinate synthase in immature human erythroid cells by heme. Cell Mol Biol, 43: 103–114.

    Google Scholar 

  • Straka JG, Bloomer JR, Kempner ES (1991) The functional size of ferrochelatase determined in situ by radiation inactivation. J Biol Chem 266: 24637–24641.

    Google Scholar 

  • Taketani S, Inazawa J, Nakahashi Y, Abe T, Tokunaga R (1992) Structure of the human ferrochelatase gene. Intron/exon gene organization and location of the gene to chromosome 18. Eur J Biochem 205: 217–222.

    Google Scholar 

  • Thompson RPH, Molland EA, Nicolson DH, Gray CH (1973) ‘Erythropoietic’ protoporphyria and cirrhosis in sisters. Gut B14: 934–938.

    Google Scholar 

  • Todd DJ, Hughes AE, Ennis KT, Ward AJ, Nevin NC, Burrow D (1993) Identification of a single base pair deletion (40 del G) in exon 1 of the ferrochelatase gene in patients with erythropoietic protoporphyria. Hum Mol Genet 2: 1495–1496.

    Google Scholar 

  • Van Wijk HJ, van Hattum J, Baart de la Faille H, van den Berg JW, Edixhoven-Bosdijk A, Wilson JH (1988) Blood exchange and transfusion therapy for acute cholestasis in protoporphyria. Dig Dis Sci 33: 1621–1625.

    Google Scholar 

  • Wang X, Poh-Fitzpatrick M, Carriero D, et al (1993) A novel mutation in erythropoietic protoporphyria: an aberrant ferrochelatase mRNA caused by exon skipping during RNA splicing. Biochim Biophys Acta 1181: 198–200.

    Google Scholar 

  • Wang X, Poh-Fitzpatrick M, Piomelli S (1994) A novel splicing mutation in the ferrochelatase gene responsible for erythropoietic protoporphyria. Biochim Biophys Acta 1227: 25–27.

    Google Scholar 

  • Wang X, Poh-Fitzpatrick M, Chen T, Malavade K, Carriero D, Piomelli S (1995) Systematic screening for RNA with skipped exon-splicing mutations of the ferrochelatase gene. Biochim Biophys Acta 1271: 358–362.

    Google Scholar 

  • Went L, Klasen EC (1984) Genetic aspects of erythropoietic protoporphyria. Ann Hum Genet 48: 105–117.

    Google Scholar 

  • Whitcombe DM, Carter NP, Albertson DG, Smith SJ, Rhodes DA, Cox TM (1991) Assignment of the human ferrochelatase gene (FECH) and a locus for protoporphyria to chromosome 18q22. Genomics 11: 1152–1154.

    Google Scholar 

  • Whitcombe DM, Albertson DG, Cox TM (1994) Molecular analysis of functional and nonfunctional genes for human ferrochelatase. Isolation and characterization of a FECH pseudogene and its sub-localization on chromosome 3. Genomics 20: 482–486.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, T.M. Erythropoietic protoporphyria. J Inherit Metab Dis 20, 258–269 (1997). https://doi.org/10.1023/A:1005317124985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005317124985

Keywords

Navigation